

Lecture 3

X-ray map corrections and multi-channel classification

Dr. Pierre Lanari

University of Bern - pierre.lanari@geo.unibe.ch

- Motivation and application examples
- X-ray maps: loading and automated indexation
- Displaying X-ray maps, adjusting color contrast and mineral identification
- Automated classification (normalized and classic methods) for manipulating single-phase data
- Manual adjustment of maskfile using the Binary module
- Manual classification
- Corrections (BRC; IDC; TRC)

Boston (USA) - August, 11th, 12th 2018 | Pierre Lanari; Tom Raimondo; Laura Airaghi; Mahyra Tedeschi

Motivations:

- 1. Quickly retrieve modal abundances from semi-quantitative maps
- 2. Prepare the X-ray maps (classify and correct) for the analytical standardization

Available online at www.sciencedirect.com

ScienceDirect

Geochimica et Cosmochimica Acta 120 (2013) 496-513

Geochimica et Cosmochimica Acta

www.elsevier.com/locate/gca

REE and Hf distribution among mineral phases in the CV-CK clan: A way to explain present-day Hf isotopic variations in chondrites

Céline Martin^{a,*}, Vinciane Debaille^b, Pierre Lanari^c, Steven Goderis^{a,e}, Isabelle Vandendael^d, Frank Vanhaecke^e, Olivier Vidal^f, Philippe Claeys^a

^a Earth System Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ^b Laboratoire G-Time, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/02, 1050 Brussels, Belgium ^c Institute of Geology, University of Bern, Baltzestrasse 1+3, Bern CH-3012, Switzerland ^d Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ^e Department of Analytical Chemistry, Ghent University, Krijgslaan 281 – S12, 9000 Ghent, Belgium ^f ISTerre-CNRS UMR 5275, Maison des Géosciences, 1381, rue de la Piscine, 38400 Saint-Martin d'Hères, France

Received 20 September 2012; accepted in revised form 4 July 2013; available online 15 July 2013

(a) Nd

unknown

(b) Sm

Mineral modes from X-ray maps

Martin et al. (2013), GCA

^a Univ. Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France

^b Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 + 3, CH-3012 Bern, Switzerland

Table 3

Degree of muscovite preservation (fraction of pixel surface with a given chemical composition, see text for details).

Microstructural position	ms_A	ms_B	ms _C
Sample: to13-4			
S1 cleavage	0.48	0.52	0
S2 cleavage	0.15	0.80	0.05
P-shadows	0	0	1
Sample: to13-7			
S1 cleavage	0.23	0.77	0
S2 cleavage	0.15	0.85	0
P-shadows	0	0	1
Sample: lm09-223			
S1 cleavage	0	0	1
S2 cleavage	0	0	1
P-shadows	0	0.15	0.85

Motivations:

- 1. Quickly retrieve modal abundances from semi-quantitative maps
- 2. Prepare the X-ray maps (classify and correct) for the analytical standardization

Classified image

Automated classification in XMAPTOOLS: K-means clustering

k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster

k initial phases compositions

- Number of clusters
- Initial centers of the clusters

Manual classification in XMAPTOOLS: chemical modules

Motivations:

- 1. Quickly retrieve modal abundances from semi-quantitative maps
- 2. Prepare the X-ray maps (classify and correct) for the analytical standardization

Drift

Secondary fluorescence effects

Lanari et al. (2018), GSL

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- Corrections

Sample MA9330

Metapelite from the Central Alps (Switzerland) Todd & Engi, (1997) JMG; Boston et al. (2017), Lithos

Prograde Peak Retrograde	garnet, muscovite biotite, muscovite biotite, chlorite	, quartz, ± plagioclase, ± biotite , quartz, kyanite, cordierite, plagioclase
Map 1 – Mineral n	natrix –	1000 x 750 pixels, 6 μm step size 100 ms dwell time – 42 h
Map 2 – Peak + Re	etrogression –	1000 x 750 pixels, 6 μm step size 100 ms dwell time – 42 h
Map3 – Garnet po	rphyroblast –	1000 x 1000 pixels, 10 μm step size 60 ms dwell time– 33 h

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- Corrections

HOW TO LAUNCH XMAPTOOLS?

1 In MATLAB©, go to the directory *Documents/MATLAB/Mapping_Data/Part1_EPMA/Example-1-CAlps/*

	MATLAB R20	12a					
1 9 0 🗗 🗸 🖿 🗂 9 0 1	h 🗊 🖹 🕜 /		🖻				
Shortcuts 🖪 How to Add 🖪 What's	New						
× 🛪 🖛 🗖 Current Folder	× ē → □	Command Window					
x re Current Folder Name A Applications in Applications dev etc home Library net Network opt sbin System Users usr var Volumes installer.failurerequests	x a ++ □ fz >>	Command Window		Favorites Favorites Favorites Favorites Favorites Ceologie Desktop MirDrop Cicloud Drive Applications Devices IfGMacLanari Shared IfG3DiskStation All Tags	Folders Mapping_Data	EX MPLE-1-CAlps	CAlps CAlps Comments CAlps Comments Comme
A Start Ready							

HOW TO LAUNCH XMAPTOOLS?

1 In MATLAB©, go to the directory *Documents/MATLAB/Mapping_Data/Part1_EPMA/Example-1-CAlps/*

MATLAB R2012a	MATLAB R2012a
🗋 🖆 🐰 🐚 🖄 🤨 🐑 🕌 🐒 🖹 🕖 /Users/pierrelanari/Desktop/Workshop_BOSTON 💎 🗔 🖻	📋 🛱 👗 🐂 🛱 🤊 🥙 🐂 🗊 🖹 🕐 🔥 top/Workshop_BOSTON/Mapping_Data/EXAMPLE-1-CAlps 💌 🛄 😢
Shortcuts 🗷 How to Add 🛛 What's New	Shortcuts 🗷 How to Add 💽 What's New
× ♂ ↔ □ Current Folder □ ↔ ♂ → □ Command Window	× ॡ IF □ Current Folder × ॡ → □ Command Window
<pre> Works > P P * * / * >> Name 4 Mapping_Data PEXAMPLE-1-CAlps Ce.txt La.txt La.txt S.txt </pre>	• EXAM • Rame A • Ce.txt • La.txt • Nitxt • P.txt • Statt • Statt • Statt

- 1 Launch XMAPTOOLS using the command: >> XMapTools
- 2) Import the following X-ray maps using the function Import map(s): _Ce.txt, _La.txt, _Ni.txt, _P.txt, _S.txt, _Zr.txt Al.txt Ca.txt, Fe.txt, K.txt, Mg.txt, Mn.txt, Na.txt, SEI.txt, Si.txt, Ti.txt, TOPO.txt (select automated indexation)
- ③ Activate the dead time correction (Check 0.cnd for dwell time; dead time: 300 ns) and press Apply Corrections

X/X		S 👻 🖫	not saved
x: y: z:	Xray map 🗘	Minerals	Normalized intensities Image: Classify Selection Image: Classify

> The list of elements and corresponding oxide is defined in /XMapTools/Program/Dev/Xmap_Default.txt

Markov		
XMAPTOOLS Default File ! L Last update (8.01.2018), Pierre Lanari !	Pr pr Pr203 PR203 Au Au Au203 AU203	🖉 🗶 📄 Xmap_Default.txt ~
Last update (8.01.2018), Pierre Lanari Last update (8.01.2018), Pierre Lanari Element / element / Oxide / OXIDE EDIT WITH CAUTION (No empty line without the comment symbol (!) LEDIT WITH CAUTION (No empty line without the comment symbol (!) An an Na20 NA20 Mg mg Mg0 MG0 Al al Al203 Al203 Si si Si02 SI02 P p P205 P205 S s S02 S02 Cl cl Cl20 CL20 Cl cc Cl20 CL20 Si si Si02 CL20 Cl cc Cl20 CL20 Si si Si02 CL20 Cl cc Cl20 CL20 Cl cc Cl20 CL20 Cl cc Cl00 Si si Si02 SN02 Cl cc Cl00 Si si Si02 SN02 Cl cc Cl203 CL203 As as As205 AS205 Sb Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 As as As205 AS205 Sb Sb203 SE203 Cl cs cs Cl20 CL203 At al L203 NA02 Pb pb Pb0 PB0 Pb Pb0 PB0 Pb Pb0 PB0 Sf sf sf Sn Sn0 Th sf Th02 TH02 U u U02 U02 Yt yt Y203 Y203 Cl cl	Au Au Au203 AU203 1 1 1 1 1 1 1 1 1 1 1 1 1	<pre>1920s 1920s 0s 0S 193Ir 193ir Ir IR 193Ft 195pt Pt PT 197Au J97Au AU 202Hg 202hg Hg HG 203Fl 2045b Pb PB 204Fb 2045b Pb PB 204Fb 2045b Pb PB 208Fb 208pb 208b 208b 208b 208b 208b 208b 208b 208</pre>
	89Y 89y Yt YT 90Zr 90zr Zr ZR	! using TfQuanti button. ! BSE <u>bse</u> BSE_s BSE_s SEI sei SEI_s SEI_s TOPD c TOPD c

X-RAY MAPS: LOADING AND AUTOMATED INDEXATION

				Import Tool		
🔅 X/	MapTool	S	Impo	ort Tool	Apply Corrections	
>> Dead ti	me correction [Electro	n Microprobe (WDS)	images]		DEAD TIME CORRECTION	
✓ Activat	e the dead time correction	Dwell time: 100.000) ms	Dead time: 300.000 ns		-0.35
>> Map si	ze correction: re-sampl	ing & rotation [LA-IO	CP-MS images]			-0.3
	Original	Modified	Scaling factor	Rotation (counterclockwise)		0.23
X (columns)	750	750	1	0		-0.2
Y (rows)	1000	1000	1	0 90 180 270		-0.15
Find an	d replace negative values (zero)					-0.1
,		Ce_EDS	Au	to Cont. 9.0002 356.3806		-0.05
			_			•
	ORI	IGINAL IMAGE	250		CORRECTED IMAGE	
			- 330		330	
			-300	11 State 1	300	
	R. Zonta	-	-250		250	
	all Press		-200		-200	
	n		150	•	150	
			-150		150	
			- 100	*	100	
			- 50		50	

BSE, SEI AND TOPO MAPS

Backscattered electrons (BSE) high energy primary electrons scattered from the entry surface. Most BSE have energies slightly lower than that of the primary electron beam E0 (mostly elastic + inelastic scattering). The fraction of beam electrons backscattered from a sample, depends strongly on the sample's average atomic number, Z, reflecting the increasing charge of the atomic nuclei.

Secondary electrons (SE) are sample electrons mobilized through inelastic scattering (i.e., involving transfer of energy from the beam electrons to the atoms of the specimen) by beam electrons overcome the surface energy barrier and escape from the sample. They have lower energies (<50 eV; majority <10 eV) compared to back-scattered electrons. The escape depth of secondary electrons is only about 1/100 of that for backscattered electrons for incident beam energies in the range 10-30 keV. SE are useful in studying the surface characteristics of the sample.

Everhart-Thornley (E-T) detector for topographic contrast: This detector analyze the BSE (negatively biased E-T detector) or both BSE + SE (positively biased E-T detector). The E-T detector is mounted on one side of the sample chamber receiving a highly directional view of the specimen. As a result, when imaging a fractured surface, the faces directly in the line-of-sight of the detector appear brighter than the other faces

X-RAY MAPS: LOADING AND AUTOMATED INDEXATION

Display the X-ray map Si:

Men	u to select the X-ray map		Work	(space: X-	ray		
X/X		not saved	100is 2.5.2	Xray	Quanti Resul	lts	
x: y: z:	Si Minerals C Normalize	d intensities	Mask file Sele COF	RRECT ne	o file selected	6	Advanced S 🗘 STANDARDIZE
9.0024 7708.22 black					7000		
Sampling		Reg.			5000		
Modules Binary TriPlot RGB Generator					4000		
Add-ons XThermoT					2000		
X-pad					1000		
Corrections BRC		X-ray Raw data (Intensi	ity) - Si				

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- Corrections

X-ray Raw data (Intensity) - Si

- Use the rotate function to rotate the image by 90°
- (2) Quickly go through all the maps using the auto-contrast function to automatically adjust the limits of the colorbar. Every time you recognize a new phase, report the coordinates of a reference pixel in the file Classification.txt
- ③ Delete the maps that are not needed

			/Us	ers/	pierre	elana	ri/De	eskto	p/Wor	kshop	p_BO	STO	N/Ma	pping	_Data	a/EX	AMP	LE-1	-CAlp	os/Clas	ssifi	cation.	txt*				
'N	🕺 🎦	đ		¥	-		5	G.	9	4			fo	✻	9	1	e t		콀	Stacl	c: [Base	٢				
*	G 📰	- [1.0	+	÷	1.1	1	×	×2	N	Find t	ext (a	96F)														
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17	! Be: ! Fo: >1 ! Be: ! Fo: >2	Low of	defin : MIN defin : DEN	e there there are a second sec	he i L_NA he d Y	nput ME_(t pi (no	xels blar	i for k!)	the X	hase	ss ()	fica	ord	fun	s >	on										
L.														plain	text	file							Ln	6	Col	1	

Users/pierrelanari/Desktop/Workshop_BOSTON/Mapping_Data/EXAMPLE-1-CAlps/Classification.tr	txt	
🛥 📲 🛅 🗃 📓 👗 🐂 🛱 🤊 🕫 🍓 👫 🖛 🗰 🍂 🧏 🖷 🖷 🗊 🗐 🏭 Stack: Base	٢	
* 5 - 1.0 + ÷ 1.1 × 📰 🛤 🔍		
<pre>1 - 10 + + 11 × • • • • • • • • • • • • • • • • •</pre>		
nlain text file	In 19 Col 1	

			/Us	sers/	pierr	elana	ari/De	eskto	p/Wor	rksho	p_BC	OSTO	N/Ma	pping	_Dat	a/EX	AMP	LE-1	-CAI	ps/Clas	sific	ation.	txt			
¥۲.	1	đ	×.	¥	ч.	<u></u>	5	6	9	М	-		fo	×	9	1	∎î		綯	Stack	: 🔳	Base	٢			
, ₩	Ç≣	-	1.0	+	÷	1.	1	×	96 ³⁶ 9	36 •	0,															
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	<pre>! Bel ! For >1 Garne Plagi Cordi Rutil Ilmer Apati Calci ! Bel ! For >2</pre>	- cow do mat: oclaste erite te te te te te te	1.0 MIN sse .e	+ e th ERAI	÷ he i L_NA 450 268 135 382 176 383 527 he d	1.	1 430 (no) 652 760 471 971 171 ity	xelsblan	for k!)	the X	Q cla Y	assi 25 (1	fica	orde	fun er a	s >))									
														plain	text	file							Ln	13	Col	29

/Users/pierrelanari/Desktop/Workshop_BOSTON/Mapping_Data/EXAMPLE-1-CAlps/Classification.txt																										
ъ	1	đ	×.	¥	•	i	9	6	5	¢	4 🔶		fo	⊯	9	1	∎†	揈	Sta	ck:	Base	\$				
*	Ģ	- 1	1.0	+	÷	1.	1	×	263	% [%]	0,															
1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 6 7 8 9 10 11 12 13 14 5 6 6 7 8 9 10 11 12 13 14 15 16 10 10 11 10 11 10 10 10 10 10 10 10 10	<pre>! Bel ! For >1 Garne Bioti Plagi Kyani Chlor Cordi Rutil Ilmen Apati Calci ! Bel ! For >2</pre>	ow d mat: t teocla tee tet te te te te te te	efin MIN se e	e tl	÷ he i.L_NA: 450 323 576 268 205 576 268 205 382 176 383 627 he d Y	nput ME_0	1 (no 855 652 760 556 471 971 677 985 171	xelf blar ¢	nine:	ral	phase	assi ≥s (fica	ord	fun	s >	5n 1)									
														plain	text	file						Ln	23	Col	1	

	/Users/pierrelanari/Desktop/Workshop_BOSTON/Mapping_Data/EXAMPLE-1-CAlps/Classification.txt																							
'N	1 🕺 🗋	3 📃	¥		i	•)	6	9	<u>i</u>	h 🔶		<u>f</u> 0	×	9 11	1	∎ĵ	揈	Stac	k: [Base	\$			
	↓ ■ -	1.0	+	÷	1.	1	×	×2	8 ⁹⁶	0,														
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	<pre>! Below ! Forma >1 Garnet Biotite Muscovi Plagioo Kyanite Chloritt Cordier Rutile Ilmenit Apatite Calcite ! Below ! Forma >2</pre>	1.0 defin t: MIN te lase e ite e t: DEN	+ NERAL NERAL	÷ he i.: L_NAJ 450 323 615 576 268 205 135 382 176 383 627 he d	1.: nput ME_(1 4300 855 6522 7600 5566 471 971 677 985 171	xels blan	i for k!)	th x	C clark	assi	fica	tion •	fun	s >									
													plain	text	file						Ln	24	Col	1

/Users/pierrelanari/Desktop/Workshop_BOSTON/Mapping_Data/EXAMPLE-1-CAlps/Classification.txt																									
ъ	1 🗋 👔	<u> -</u>	¥	-	Control	5	6	9	<u>d</u> et	•		fo	×	9		ľ	1	綯	Stac	k: (Base	\$			
× •		- 1.0	+	÷	1.	1	×	**	% [%]	0,															
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	<pre>! Belo ! Form >1 Garnet Biotit Muscov Plagio Kyanit Quartz Chlori Cordie Rutile Ilmeni Apatit Calcit ! Belo ! Form >2</pre>	- 1.0 w definat: MI e ite clase e te rite te e e e w definat: DE	+ NERA NSIT	÷ he iL_NA 450 323 615 576 268 545 205 135 382 176 383 627 he d Y	1.: nput ME_(1 430 855 652 760 145 556 471 971 677 985 171	xels blar	iner	though the state of the state o	C class	assi ≥s (fica	tion	fun	actic	on 1)									
23 24 25 26 27																									
													plain	text	file							Ln	26	Col	1

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- Corrections

- Select the method "Normalized intensities" and the mode "file" in the classification menus
- 2 Press CLASSIFY
- ③ Follow the instructions given by the program. In this example, Mn is excluded from the classification; system: Ce, La, Zr, Al, Ca, Fe, K, Mg, Na, Si, Ti

If you want to use the mode "selection", you need to find a map on which all the phases are visible in order to define the reference pixels of each phase.

The classification function generates a <u>maskfile</u>

AUTOMATED CLASSIFICATION (NORMALIZED AND CLASSIC METHODS)

- 4 Garnet
- 3 Chlorite
- 2 Plagioclase

Note:

1 Quartz

It is possible to select and manipulate maskfiles using the maskfile menu and the corresponding buttons (4) Check the classification by displaying each phase

(4) Check the classification by displaying each phase

- Select the method "Classical computation" and the mode "file" in the classification menus
- 2 Press CLASSIFY
- (3) Follow the instructions given by the program. In this example, Mn is excluded from the classification; system: Ce, La, Zr, Al, Ca, Fe, K, Mg, Na, Si, Ti

(4) Check the classification by displaying each phase

AUTOMATED CLASSIFICATION (NORMALIZED AND CLASSIC METHODS)

① Delete the second maskfile (*Meth1-MaskfFile2*, classic computation)

2 Remove Cordierite from the list in Classification.txt

AUTOMATED CLASSIFICATION (NORMALIZED AND CLASSIC METHODS)

- ① Delete the second maskfile (*Meth1-MaskfFile2*, classic computation)
- 2 Remove Cordierite from the list in Classification.txt
- ③ Select the method "Normalized intensities" and the mode "file" in the classification menus
- (4) Press CLASSIFY
- 5 Follow the instructions given by the program. In this example, Mn is excluded from the classification; system: Ce, La, Zr, Al, Ca, Fe, K, Mg, Na, Si, Ti
- 6 Export the maskfile (all masks) as "AutoClassificationNoCrd.txt"

- All the pixels are classified (no zero)
- The pixels of kyanite and cordierite are in mask number 5, *kyanite*

Save the projec

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- Corrections

Automated classification (normalized)

1 Select the phase kyanite

② Open the chemical module "Binary"

③ Plot the pixel compositions in a diagram *Si vs Al*

④ Use the identify pixel tool "single group: quick (rectangle)" to select the pixels of cordierite

MANUAL ADJUSTMENT OF MASKFILE

- (5) Press "build a maskfile" and generate a new maskfile "Cordierite.txt"; Note: it is important to only export the selected pixels. Edit the name of the mask "Selection_1" to "Cordierite"
- 6 Close the Binary module
- 7 In XMAPTOOLS, import and merge the two maskfiles

kyanite + cordierite

MANUAL ADJUSTMENT OF MASKFILE

1 Select "none" in the *phase menu*

② Open the chemical module "Binary"

In this case the compositions of all the pixels have been sent to the Binary module 1 Plot again *Si vs Al* and press "auto" to adjust the axis limits

② Compute a density map of this diagram with a resolution of 40 px

③ Close the density map

④ Identify the mineral(s) corresponding to each group of pixel

3 Use the tool identify pixels (multi-groups free shapes to select the pixels of the phases: (1) cordierite, (2) kyanite, (3) muscovite, (4) plagioclase, (5) quartz and (6) chlorite and save the corresponding maskfile (*name: Manual_Crd-Ky-Ms-PI-Qz-Chl.txt*)

④ Plot a diagram *Fe vs K* and export a maskfile containing (1) biotite, (2) garnet and (3) ilmenite (*Manual_Bi-Grt-Ilm.txt*)

- (5) Plot a diagram *Zr vs Ca* and export a maskfile containing (1) calcite and (2) apatite (*Manual_Clc-Ap-Ilm.txt*)
- 6 Plot a diagram *Ti vs Ca* and export a maskfile containing the pixels of rutile (*Manual_Rt.txt*)
- (7) Go back to XMAPTOOLS and import the maskfiles Manual_Crd-Ky-Ms-PI-Qz-Chl.tx, Manual_Bi-Grt-Ilm.txt, Manual_Clc-Ap-Ilm.txt and Manual_Rt.txt

8 Export the phase proportions of the semi-automated and manual maskfiles

	Semi-auto	Manual
Biotite:	9.21	7.87
Garnet:	11.12	12.29
Ilmenite:	0.21	0.14
Calcite:	0.4	0.15
Apatite:	0.13	0.09
Cordierite:	0.16	0.17
Kyanite:	6.06	5.96
Muscovite:	14.99	14.23
Plagioclase:	20.79	22.25
Quartz:	31.82	32.68
Chlorite:	5.02	4.08
Rutile:	0.1	0.09

MANUAL CLASSIFICATION WITH THE BINARY MODULE

(9) Keep the maskfile from the semi-automated classification and delete the other maskfiles

	/Users/pierre	lanari/Desk	top/Works	shop_BOS1	ron/N	/lapping	_Data/E	EXAM	PLE-1	-CAI
ъ	🕴 🛅 🖨 📓 🐰	- 🐂 📋	9 (*	🎍 🗛		🔶 <u>f</u> o	, 🗶	9	¶ (;	»
*	Ç – 1.0	+ ÷	1.1 ×	<u>8</u> %	0,					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	<pre>! Below define ! Format: MINE >1 Garnet Biotite Muscovite Plagioclase Kyanite Quartz Chlorite Rutile Ilmenite Apatite Calcite Cordierite</pre>	e the inp IRAL_NAME 450 323 615 576 268 545 205 382 176 383 583 135	ut pixe (no bl 855 85 652 760 145 556 971 677 985 108 471	ls for t	he cl X Y	Lassif 7		on fu	unctio	n
		plain text	t file				Ln	20	Col	1

Key steps

- Import the maps into XMAPTOOLS
- Identify the mineral phases
- Automated classification
- Manual classification using the Binary module
- <u>Corrections</u>

Table 3.1 – Corrections available in XMapTools, modes and requirements

corrections

correction

methods

- BRC filters mixing pixels out
- IDC corrects time-related intensity drift
- TRC corrects TOPO-related intensity variations

100 %

(1

a given pixel:

with

and

You can activate or deactivate the BRC correction using the button BRC on the left hand-side. Once BRC is activated, the correction is applied for most of the operations and plots performed in the workspace X-ray

Corrections

2

You can activate or deactivate the BRC correction using the button BRC on the left hand-side. Once BRC is activated, the correction is applied for most of the operations and plots performed in the workspace *X-ray*

Compare the map of silicon with the BRC active and without

You can activate or deactivate the BRC correction using the button BRC on the left hand-side. Once BRC is activated, the correction is applied for most of the operations and plots performed in the workspace *X-ray*

③ Plot a binary diagram *Si vs Al* containing all the pixels

Table 3.1 – Corrections available in XMapTools, modes and requirements

- BRC filters mixing pixels out
- IDC corrects time-related intensity drift
- TRC corrects TOPO-related intensity variations

Lanari et al. (2018), GSL

Correction factor for Si X-ray intensity (%)

Correction factor for AI X-ray intensity (%)

(1) Select "IDC" in the correction menu and press "RUN"

② Display the map "Si" and the phase "Quartz". Check for vertical and horizontal drift

	VER YMTModDC 750		VED VIITNANDO 750
XMAPTOOLS Intensit	y Drift Correction Tool Apply Corrections and Exit IDC	XMAPTOOLS Intensit	y Drift Correction Tool Apply Corrections and Exit IDC
>> Display Si Image display Si Image display Quartz Image display Trace Cast Auto Cast Trace Cast Image display Trace Cast	Correction parameters Vertical drift Linear linear interpolation Correction schemes No correction schemes available to far Output Correction schem	>> Display	Cerrection parameters Vertical drift BRC corrections There interpolation Corrections schemes No corrections schemes exallable so far Corrections schemes exallable so far Correct

3 Close the IDC module

Abbreviation	Name	Button string	Correction mode	Requirements
BRC	Border-removing correction	APPLY	No	existing mask file
TRC	Topo-related correction	SET	Yes (External GUI)	TOPO map
MPC	Map position correction	ACTIVATE	Yes	Standards analyses
SPC	Standard position correction	ACTIVATE	Yes	Standards analyses
IDC	Intensity drift correction	APPLY	No	Phase selected
BA1	Background correction (using maps)	APPLY	No	Background maps
RM1	Clean pixels (area; all maps)	SELECT	Yes	

Table 3.1 - Corrections available in XMapTools, modes and requirements

- BRC filters mixing pixels out
- IDC corrects time-related intensity drift
- TRC corrects TOPO-related intensity variations

1 Load the TOPO map

2 Activate the BRC

- 3 Select "TRC" in the correction menu and press "RUN"
- ④ Select the element "Si" and "none" in the phase menu

- 1 Load the TOPO map
- 2 Activate the BRC
- ③ Select "TRC" in the correction menu and press "RUN"
- ④ Select the element "Si" and "none" in the phase menu
- (5) Check the other elements
- 6 Close the TRC module

QUESTIONS / DISCUSSION

